Identification of the VTEC serogroups mainly associated with human infections by conventional PCR amplification of O-associated genes

1. Aim and field of application

The present method concerns the identification by PCR amplification of the genes associated with the O antigens of the VTEC serogroups mainly associated to severe human disease. The method is intended for the identification of the serogroup of *E. coli* strains isolated in pure culture. The serogroups in the field of application of the present method are: O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146, and O157. All these serogroups have been frequently reported in human infections.

2. Definitions

VTEC: strains possessing the genes encoding the verocytotoxins. The majority of VTEC strains isolated from cases of severe human disease possess also the eae gene, coding for the adhesin “intimin”, involved in the “attaching and effacing” mechanism of adhesion to the intestinal mucosa.

O-Somatic antigen: Serogroups or “O” antigens are identified by numbers, counting from 1 to 187, and the serogroups list is evolving constantly.

Deoxyribonucleotides (dNTPs): nucleotidic units of DNA that are added to the amplification reaction in order to allow in vitro polymerization of DNA.

Primers: oligonucleotides used to prime the amplification of a template by DNA polymerase.

Taq polymerase: DNA polymerase enzyme that catalyzes the polymerization of a DNA tract complementary to a template.

3. Abbreviations

PCR: polymerase chain reaction

TSA: Tryptone Soy Agar

VTEC: Verocytotoxin-producing *Escherichia coli*

EtBr: ethidium bromide
4. Procedure

4.1 Principle of the method

The method is based on the amplification by end-point PCR of the genes associated with the following O-groups: O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146, and O157. The method includes the use of specific primers selected from the literature and is composed of the following steps:

• Template preparation
• Setting up the PCR reaction
• Determination of the PCR results by agarose gel electrophoresis.

4.2 Template preparation

Isolated strains streaked onto solid media (e.g. TSA) are processed as follows:

• Pick a single bacterial colony with a sterile 1 µl loop;
• Prepare the template by suspending the bacteria in 100 µl of filter-sterilized deionized water (0.22 µm) and keep the tube in boiling water for 10 minutes.

4.3 Setting up the PCR reaction

Set up 50-µl reactions for each O-group, according to the conditions described in section 5. In each PCR assay, a positive and two negative controls must be included. The positive controls are DNA templates containing the O-associated genes tested, while negative controls must include a DNA sample negative for the O-antigen-genes concerned and a sample without any DNA added.

4.4 Agarose gel electrophoresis

Prepare an agarose gel (2% w/v) in 1X Tris/Borate/EDTA (TBE) or Tris/Acetate/EDTA (TAE). Each well of the gel is loaded with 15 µl of each reaction added with loading die at 1X final concentration. Run the samples in 1X running buffer (TBE or TAE) in constant voltage (100 V). Use a molecular weight marker suitable for assignment of the correct molecular weights to the amplicons produced (section 5). Make sure that the bands produced by the samples and the positive control match exactly the expected molecular
weight. Agarose gels should be added of ethidium bromide to allow the visualization of DNA. This reagent is a DNA intercalating agent commonly used as a nucleic acid stain in molecular biology laboratories. When exposed to ultraviolet light, it will fluoresce with a red-orange color. Ethidium bromide should be added to a final concentration of 0.5 µg/ml before pouring the agarose gel in the electrophoresis gel cast. Alternatively the agarose gel can be stained after electrophoresis in a 1 µg/ml ethidium bromide aqueous solution. Ethidium bromide is a mutagen and should be handled according to the relevant safety sheet and or regulations. Alternatively, less hazardous stains for visualization of DNA in agarose such as SYBR® Safe DNA Gel Stain or GelRed™ may be used in the conditions indicated by the supplier.

4.5 Devices/Instruments

• Laminar flow hood for PCR
• Bacteriology sterile loops
• 37°C +/-1°C incubator
• Technical bench scales
• Autoclave
• Pipet-aid
• Micropipettes
• Sterile micropipette tips
• 1.5 ml microcentrifuge tubes
• 0.2 or 0.5 ml PCR tubes
• Thermalcycler
• Water deionizer
• Electrophoresis apparatus
• U.V. transilluminator
• Microwave oven

4.6 Reagents and media

• TSA plates
• Deionized water
• dNTPs stock solution
• Synthetic oligonucleotides solution
• Taq DNA polymerase and reaction buffer 10X with or without MgCl₂
• Electrophoresis running buffer
• Molecular weight DNA marker
• Loading die
• Agarose
• Ethidium bromide or alternative gel staining solution

4.7 Safety and protection devices

VTEC strains can infect human beings at a very low infectious dose and can cause severe disease. Laboratory acquired infections have been reported. Therefore, working with VTEC requires good laboratory practices and the use of protection devices. VTEC are class 3 pathogens and in some countries their handling is allowed in CL 3 laboratory only. Ethidium bromide is a mutagen and toxic agent; therefore it should be used in compliance with the safety sheet provided and with protection devices (lab-coats and latex gloves). The U.V. light may cause damage to eyes so it is mandatory the use of plexiglass shields and protective glasses.

4.8 Reference strains

VTEC strains belonging to serogroups O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146, and O157 should be used as positive control. The isolates provided by EU-RL VTEC in the framework of the proficiency testing programs can be used as reference strains.

4.9 Interpretation of the results

Samples showing amplification fragments of the expected size (section 5) are considered positive.
5. Primers’ sequences and amplification conditions

5.1 Primers sequences and amplicon sizes

<table>
<thead>
<tr>
<th>O antigen</th>
<th>Target gene</th>
<th>Primer</th>
<th>Sequence</th>
<th>Amplicon (bp)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O26</td>
<td>wzx</td>
<td>5'O26</td>
<td>ACTCTTGCTTGCGCTGTT</td>
<td>268</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O26</td>
<td>CAGCGTGACTTTTGACCTTAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O45</td>
<td>wzx</td>
<td>O45 wzx2 F</td>
<td>TATGACAGGCACATGGATCTGTGG</td>
<td>255</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O45 wzx2 R</td>
<td>TGGGACAGCGCTGGCTTTGATAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O55</td>
<td>wbgN</td>
<td>O55F</td>
<td>TGTAATTCGATGCAACCAATTCAG</td>
<td>70</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O55R</td>
<td>CGCTTCGACGTTGACATAAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O91</td>
<td>wzy</td>
<td>O91F</td>
<td>CGATTCTTCTGGAATGCTTGTG</td>
<td>105</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O91R</td>
<td>CAATACATAGTTTGTGTTAAGTTAAAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O103</td>
<td>wzx</td>
<td>5'O103</td>
<td>TATCTTCATAGCCTGTTGTT</td>
<td>320</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O103</td>
<td>AATAGTAATAGCAGACACCTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O104</td>
<td>rfb</td>
<td>O104rfbO-f</td>
<td>TGAACCTGATTGTTTAGATGG</td>
<td>351</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O104rfbO-r</td>
<td>AGAACCTCCTCAAATTATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O111</td>
<td>wzx</td>
<td>5'O111.3</td>
<td>GTTGCAGGAATAATTCTTCA</td>
<td>829</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O111.2</td>
<td>CCATAGATATTGCAAAAGGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O113</td>
<td>wzy</td>
<td>O113F</td>
<td>AGCGTTTCAGCTATATGGATTG</td>
<td>593</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O113R</td>
<td>GTGGTATATCAAAGGGCTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O121</td>
<td>wzx</td>
<td>5'O121</td>
<td>GTAGCGAAAGGTAGTACTGG</td>
<td>651</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O121</td>
<td>ATGGGAAAGCTGATCTGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O128</td>
<td>wzy</td>
<td>O128 13F</td>
<td>ATGGTTCTTACGGAGTGC</td>
<td>782</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O128 13R</td>
<td>CTCTAACCTTAATCCCTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O145</td>
<td>wzx</td>
<td>5'O145.6</td>
<td>TGGGACACTTATCAACAAGAGATT</td>
<td>418</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O145.B</td>
<td>GATGGATAGCTGACGTATACCAAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O146</td>
<td>wzy</td>
<td>O146 F</td>
<td>ATTCGGGTAACGGACGCTGTGTTGA</td>
<td>378</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O146 R</td>
<td>AGACTGCTAATGGAAGAACACTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O157</td>
<td>wzx</td>
<td>5'O157</td>
<td>GCTCTTATGCGAGATGCCT</td>
<td>133</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3'O157</td>
<td>CGACCTCACTACCGAACACTA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Amplification conditions by serogroup

1) **O26:** Reaction Buffer 1X; MgCl$_2$ 3 mM; dNTPs concentration 0.3 mM each; primers’ concentration 400 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (−1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed
by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

2) **O45**: Reaction Buffer 1X; MgCl₂ 2 mM; dNTPs concentration 0,2 mM each; primers’ concentration 500 nM, 1 Unit of Taq. Thermal profile: 95°C for 5 minutes, 30 cycles 95°C for 30 seconds, 59°C for 30 seconds, 72°C for 30 seconds; and a final extension step at 72°C for 5 minutes.

3) **O55**: Reaction Buffer 1X; MgCl₂ 1.5 mM; dNTPs concentration 0,2 mM each; primers’ concentration 500 nM; 1 Unit of Taq. Thermal profile: 95°C for 5 minutes, 35 cycles 95°C for 30 seconds, 57°C for 30 seconds, 72°C for 30 seconds; and a final extension step at 72°C for 5 minutes.

4) **O91**: Reaction Buffer 1X; MgCl₂ 1.5 mM; dNTPs concentration 0,2 mM each; primers’ concentration 500 nM; 1 Unit of Taq. Thermal profile: 95°C for 5 minutes, 30 cycles 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 30 seconds; and a final extension step at 72°C for 5 minutes.

5) **O103**: Reaction Buffer 1X; MgCl₂ 3 mM; dNTPs concentration 0,3 mM each; primers’ concentration 200 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (decrease 1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

6) **O104**: Reaction Buffer 1X; MgCl₂ 1.5 mM; dNTPs concentration 0,2 mM each; primers’ concentration 360 nM; 1 Unit of Taq; Thermal profile: 95°C for 5 minutes, 30 cycles 95°C for 30 seconds, 55°C for 1 minute, 72°C for 1 minute; and a final extension step 72°C for 5 minutes.

7) **O111**: Reaction Buffer 1X; MgCl₂ 3 mM; dNTPs concentration 0,3 mM each; primers’ concentration 200 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (decrease 1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

8) **O113**: Reaction Buffer 1X; MgCl₂ 2 mM; dNTPs concentration 0,2 mM each; primers’ concentration 250 nM; 1 Unit of Taq. Thermal profile: 95°C for 5 minutes, 30 cycles 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 1 minute; and a final extension step 72°C for 5 minutes.
9) **O121**: Reaction Buffer 1X; MgCl₂ 3 mM; dNTPs concentration 0,3 mM each; primers’ concentration 100 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (decrease 1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

10) **O128**: Reaction Buffer 1X; MgCl₂ 1.5 mM; dNTPs concentration 0,2 mM each; primers’ concentration 500 nM; 1 Unit of Taq; Thermal profile: 95°C for 5 minutes, 35 cycles 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute; and a final extension step 72°C for 5 minutes.

11) **O145**: Reaction Buffer 1X, MgCl₂ 3 mM; dNTPs concentration 0,3 mM each; Primers’ concentration 200 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (decrease 1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

12) **O146**: Reaction Buffer 1X; MgCl₂ 1.5 mM; dNTPs concentration 0,2 mM each; primers’ concentration: 500 nM; 1 Unit of Taq. Thermal profile: 95°C for 5 minutes, 35 cycles 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute; and a final extension step 72°C for 5 minutes.

13) **O157**: Reaction Buffer 1X; MgCl₂ 3 mM; dNTPs concentration 0,3 mM each; primers’ concentration: 300 nM; 2.5 Units of Taq. Thermal profile: 95°C for 5 minutes, 10 cycles of 95°C for 30 seconds, 68–59°C (decrease 1°C/cycle) for 20 seconds, 72°C for 52 seconds, followed by 35 cycles of 95°C for 30 seconds, 59°C for 20 seconds, 72°C for 52 seconds and a final extension at 72°C for 1 minute.

The PCR reactions for the amplification of the genes associated with O26, O103, O111, O121, O145, and O157 can be performed as a multiplex PCR. In case of a faint band in the positive control for a given target it is advisable to repeat the PCR in single.
6. References

