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Structural Alerts of Mutagens and Carcinogens
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Abstract: This paper summarizes the evidence on the Structural Alerts of mutagenicity and carcinogenicity.
The Structural Alerts are molecular substructures or reactive groups that are related to the carcinogenic and
mutagenic properties of the chemicals, and represent a sort of “codification” of a long series of studies aimed at
highlighting the mechanisms of action of the mutagenic and carcinogenic chemicals. The identification of the
Structural Alerts has had a great value both in terms of understanding mechanisms, and of assessing the risk
posed by chemicals. This mini-review illustrates a number of case studies where the Structural Alerts have
played a fundamental role in risk assessment, and describes recent work aimed at expanding or refining the
knowledge on the Structural Alerts through the use of Artificial Intelligence and Data Mining approaches.
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INTRODUCTION

In a brilliant review paper entitled “Domestication of
chemistry by design of safer chemicals: Structure-Activity
Relationships”, E.J. Ariens described how the concept and
practice of Structure-Activity Relationships (SAR) was
intervening in the field of toxicology in the mid 1980’s [1].
He wrote: “...Biological –including toxic- effects are the
result of an interaction of the xenobiotic molecules with
particular molecules, usually biopolymers in the biological
objects. The chemical properties of the xenobiotics therefore
are a determining factor. A relationship between chemical
structure or chemical properties and biological action, SAR,
therefore is in the nature of things and undeniable,
notwithstanding the fact that it is not always easily
recognized...”. Then Ariens showed that there were two
approaches to SAR: “..1. The functional group approach:
This takes into account the significance of particular groups
in the molecule for particular aspects, part processes, in the
biological action. Examples are groups described as
pharmacophores or toxicophores; .... 2. The integral
approach: In this case the overall properties of the molecules
count. The various correlative methods are examples, such as
the Hansch regression analysis...”.

As a matter of fact, the 1980’s were the years during
which the Quantitative Structure-Activity Relationships
(QSAR) approach was having a dramatic development, with
an exponential increase in methods and computerized
technologies proposed, and the more qualitative approach
based on the simple recognition of toxicophores was
entering into shade. This is even more so today. However,
the knowledge of the toxicophores, as recognition and
classification of the molecular substructures and reactive
groups responsible for the toxic effects, is still at the basis
of the mechanistic science of toxicology and provides
powerful means of intervention to “domesticate” the
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chemicals. This mini-review is a survey of the field of
toxicophores, or Structural Alerts (SA) for mutagenicity and
carcinogenicity. It shows the evolution of the field, and
presents the practical implementation of such knowledge in
today toxicology.

THE IDENTIFICATION OF THE STRUCTURAL
ALERTS

The electrophilic theory of chemical carcinogenesis
developed by James and Elizabeth Miller [2, 3] enabled the
activity of the large majority of animal carcinogens known
by the 1970’s to be tentatively rationalized. Equally, the
activity of chemicals as mutagens to Salmonella almost
always seems plausible within the context of the Miller’s
hypothesis [4]. Historically, in the 1960’s the Miller’s noted
the electrophilicity of the carcinogenic alkylating agents.
Since then, a number of acylating agents were found to be
carcinogenic, and these chemicals were also electrophilic as
administered. The Miller’s were also much impressed by the
variety of chemical carcinogens of rather different structures
for which metabolism to electrophilic reactants had been
demonstrated. Overall, this evidence led them to suggest
“that most, if not all, chemical carcinogens either are, or are
converted in vivo to, reactive electrophilic derivatives which
combine with nucleophilic groups in crucial tissue
components, such as nucleic acids and proteins” [3].

After a number of decades, the hypothesis of the
electrophilic reactivity of (many) chemical carcinogens
maintains its validity, and has been incorporated into a more
general theory on the chemical carcinogens. From the point
of view of the mechanism of action, the carcinogens are
classified into: a) genotoxic carcinogens, which cause
damage directly to DNA. Many known mutagens are in this
category, and often mutation is one of the first steps in the
development of cancer [5]; and b) epigenetic carcinogens,
that do not bind covalently to DNA, do not directly cause
DNA damage, and are usually negative in the standard
mutagenicity assays [6]. Whereas the epigenetic carcinogens
act through a large variety of different and specific
mechanisms, the genotoxic carcinogens have the unifying
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Fig. (1). The figure displays the Ashby’s Structural Alerts (adaptation form the original drawing in 4) (see details in the text).

feature that they are either electrophiles per se or can be
activated to electrophilic reactive intermediates, as originally
postulated by the Miller’s. Following this hypothesis,
several investigators studied the mechanisms of action and
the metabolic fate of a large number of carcinogens; this led
to the identification of several chemical functional groups
and substructures (Structural Alerts, SA) for genotoxic
carcinogens. On the contrary, the recognition of SAs for the
nongenotoxic carcinogens is far behind, also because no
unifying theory provides scientific support [6].

ASHBY’S COMPILATION OF STRUCTURAL
ALERTS

Following the seminal work of the Miller’s, a
distinguished contribution to the advancement and
dissemination of the knowledge on the SAs for
carcinogenicity has been provided by John Ashby. He has
also shown that the activity of chemicals as mutagens to
Salmonella can explained by the electrophilicity theory of
the Miller’s. As discusses above, this applies to the so-
called genotoxic carcinogens. A very effective popularization
of the SAs has been provide by Ashby in the form of a
graphical display (poly-carcinogen), which represents a
hypothetical chemical made of most of the known SAs. Fig.
(1) is an adaptation of the well-known Ashby’s poly-
carcinogen, presented originally in [7], and in revised form
in [4].

The SAs represented in Fig. (1) are the following:

a) alkyl esters of either phosphonic or sulphonic acids;

b) aromatic nitro groups;

c) aromatic azo groups (because of the possible reduction
to aromatic amines);

d) aromatic rings N-oxides;

e) aromatic mono- and dialkylamino groups;

f) alkyl hydrazines;

g) alkyl aldehydes;

h) N-methylol derivatives;

i) monolakenes;

j) β-haloethyl mustards;

k) N-chloroamines;

l) propiolactones and propiosultones;

m) aromatic and aliphatic aziridinyl derivatives;

n) aromatic and aliphatic substituted primary alkyl halides;

o) derivatives of urethane (carbamates);

p) alkyl N-nitrosoamines;

q) aromatic amines (including their N-hydroxy derivatives
and the derived esters);

r) aliphatic and aromatic epoxides.

Each of the SAs is a “code” for a well-characterized
chemical class, with its own specific mechanism of action.
However, there are also general factors that may influence the
potential reactivity of a chemical, i.e., one could expect to
observe compounds with structurally alerting features but
which are biologically inactive because of a number of
reasons. Among the physicochemical factors that modulate
and may hinder the potential biological activity of the
chemicals with SAs are: 1) Molecular Weight (MW):
chemicals with very high MW and size have little chance of
being absorbed in significant amounts; 2) physical state,
which influences the capability of the compounds to reach
critical targets; 3) solubility: in general highly hydrophilic
compounds are poorly absorbed and, if absorbed, are readily
excreted; 4) chemical reactivity: compounds which are “too
reactive” may not be carcinogenic because they hydrolize or
polymerize spontaneously, or react with noncritical cellular
constituents before they can reach critical targets in cells.
Another critical factor is the geometry of the chemical
compounds: many potent carcinogens and mutagens (e.g.
polycyclic aromatic hydrocarbons, aflatoxin B1, etc…) are
planar molecules, with an electrophilic functional group and
favorable size, so that they can intercalate properly into DNA
[8].
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To take into account the above modulating factors and
the empirical evidence provided by the experimental results,
Ashby further elaborated on the description of SAs [4].
Some examples of his considerations are the following:

1) All aromatic amino, substituted amino, and nitro
compounds have been considered as positive, except in
cases of ortho-di-substitution or where a carboxylic
acid is present ortho to the nitrogen substituent. These
factors are expected to hinder metabolic activation of
the adjacent nitrogen substituent;

2) Aromatic –NR2 groups have been scored as positive
unless R = C3 or greater, or extensive steric crowding
of the substiteunts exists;

3) Chlorinated olefins have been scored as positive only
where a sterically accessible epoxide derivative could be
formed, i.e., where at least one hydrogen or alkyl group
is attached to each carbon atom.

Large-scale applications of the SAs to classify chemicals
in terms of their toxic propensity have been provided by
Ashby and co-authors in a number of papers, e.g., [4, 9-13].
Another interesting contribution was provided in a paper
[14] where Ashby participated to a challenge on the
prospective prediction of the Salmonella mutagenicity of
100 chemicals which were on the way of being tested by the
US National Toxicology Program, but their results had not
yet been published at the time of the predictions. For the
results of this prediction exercise, see also [15]. In his
contribution, Ashby first assessed the chemical structures for
actual or potential electrophilic centers according to the
mega-structure described in [4]. As a secondary exercise,
these classifications were re-assessed for the likelihood that
the Salmonella assay would detect SA-containing agents as
mutagens. This secondary expert judgment was based on
such considerations as prior experience with a wide range of
structurally diverse chemicals and mechanistic inferences
[14].

APPLICATION OF SAS IN TOXICOLOGY: CASE
STUDIES

The recognition of SAs and of the critical structural
factors has been a very important scientific advancement,
since it has contributed to the design of safer chemicals [1],
and to the assessment of the toxic potential of chemicals
devoid of appropriate toxicological data [8]. The use of the
SAs has been extensive in the assessment of the risk posed
by environmental chemicals (see, e.g., [16]). The use of the
knowledge on the SAs is increasing in other application
fields as well. The following is a very recent description of
the use of SAs by the US Food and Drug Administration
(FDA) [17].

The FDA food contact notification (FCN) process is the
primary method of authorizing new uses of food additives
that are food contact substances (FCS) in the U.S. The
organism responsible for ensuring the safe use of U.S. food
ingredients and food packaging, is the FDA Office of Food
Additive Safety (OFAS), that administers the program that
evaluates safety information in industry submissions for the
use of various categories of food substances. In this program
a SAR analysis is required for the chemicals, even if the use

Table I. Structural Alerts for Carcinogenicity According to
Bailey et al. [17]

Aryl and heterocyclic ring substituted amino- and nitro-derivatives:

Primary and secondary aromatic amines (with methyl or ethyl, or 
activated methyl or ethyl, substituents)

Tertiary aromatic amines (with methyl or ethyl substituents)

Secondary aromatic acetamides and formamides

Nitroarenes

Nitrosoarenes

Arylhydroxylamines

Nitroso compounds:

N-nitroso-N-dialkylamines

N-nitroso-N-alkylamides

N-nitroso-N-alkylureas

N-nitroso-N-alkylcarbamates (aka urethanes)

N-nitrosos-N-alkylnitriles

N-nitroso-N-hydroxylamines

Hydrazo derivatives:

Hydrazines

Azoxy alkane

Natural electrophiles:

Aliphatic halides

Benzylic halides

Oxiranes and aziridines

Propiolactones

Alkyl esters of sulfonic and sulphuric acids (with methyl or ethyl 
substituents)

Alkyl esters of phosphonic and phosphoric acids (with methyl or 
ethyl substituents)

Mixed alkyl esters of phosphoric with methyl or ethyl substituents)

Haloethylamines

Haloalkylethers (ethyl and methyl)

α-Halocarbonyl or a-halohydroxy

Haloamines

α,β-unsaturated carbonyls (aldehyde, ketone, ester, or amide 
group)

Allylic halides and alkoxides (Cl, Br or I)

Other alerting groups:

Halogenated methanes

Vinyl halides (Cl, Br or I)

Polycyclic aromatic hydrocarbons

Isocyanate

Isothiocyanate

Azoarenes (sulfonic group on both rings non-alerting)

of the substance would result in a very low dietary
concentration. Among the various classification schemes
developed, most of which are based on classification of
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Table II. Structural Alerts for the TTC Approach According to Cheeseman et al. [22]

SAs Underlying action mechanism

N-Nitroso compounds Bioactivated to produce highly reactive electrophile

Endocrine disruptors Potential hormonal mechanism

Strained heteronuclear rings Activation-independent and bioactivated to produce highly reactive electrophile

Heavy metal compounds Neurotoxins

Alpha-nitro furyl compounds Bioactivated to produce highly reactive electrophile

Hydrazines/triazenes/azides/azoxy Bioactivated to produce highly reactive electrophile compounds

Polycyclic amines Bioactivated to produce highly reactive electrophile

Organophosphorous compounds Neurotoxins

either mutagens or carcinogens into broad categories, the
Ashby and Tennant classification scheme for SAs was found
one of the most useful schemes to assess carcinogenic
potential of an untested substance. Their list (Table I) of
functional groups associated with DNA reactivity
(genotoxicity) is based on Ashby’s composite ‘‘model
structure’’ [4] and a related functional groups list compiled
by Munro et al. [18].

A second case study refers to the application of the SAs
to the definition of the so-called Threshold of Toxicological
Concern (TTC). This is an approach aimed at reducing
extensive toxicity evaluations. This approach refers to the
establishment of a generic human exposure threshold value
for (groups of) chemicals below which there would be no
appreciable risk to human health. The underlying principle is
that such a value can be identified for many chemicals,
including those of unknown toxicity, when considering their
chemical structures and the known toxicity of chemicals
which share similar structural characteristics. In the
meantime, the concept that there are levels of exposure that
do not cause adverse effects is strictly related to the
possibility of setting acceptable daily intakes for chemicals
with known toxicological profiles. A general TTC approach,
mainly based on carcinogenicity data, was the scientific
basis of the U.S. Food and Drug Administration Threshold
of Regulation for indirect food additives (Threshold of
Regulation for Food contact materials). Further
developments [19, 20] were based on an extensive analysis
of available chronic toxicity data of substances, which were
divided into three chemical classes on the basis of their
structure using the Cramer decision tree [21]. The
cumulative distributions of NOELs (no observed effect
levels) for the compounds in each Cramer structural class
were plotted, and a log-normal distribution was fitted. The
fifth percentile NOEL values were calculated and converted
to corresponding human intakes by dividing by the usual
100-fold uncertainty factor and then multiplied by 60 to
scale to the adult human body weight. These analyses gave
thresholds of toxicological concern of 1800, 540, and 90 µg
per person per day for Cramer structural classes I, II, and III.

Cheeseman et al. [22] presented an approach for
extending the principle of a single threshold of regulation,
applied by FDA to components of food-contact articles, to a
range of dietary concentrations, by using structure-activity

relationships, genotoxicity, and short-term toxicity data. In
particular, in order to identify structural alerts useful to
support higher threshold levels, the authors examined the
most potent substances in a set of 709 carcinogens, extracted
from the Gold carcinogenic potency database (http://potency.
berkeley.edu/). Structural alerts similar to those utilized by
Ashby and Tennant [4], were identified and correlated with
the TD50s. This resulted in the identification of eight more
complex, less generalized structural alerts, that include a
majority of the more potent of the 709 carcinogens (Table
II). This study shows that the inclusion of structural alerts
as criteria for substances proposed for approval under a
threshold of regulation process, can significantly increase the
safety assurance margin. Substances that do not belong to
any of the structural alert classes are likely to have much
lower carcinogenic potencies, and therefore may qualify for a
higher threshold level.

The scheme of structural alerts proposed by Ashby and
Tennant [4] and by Cheeseman et al. [22] was re-examined
by Kroes et al. [23] in order to identify the structural groups
of most concern at the lowest dietary concentrations. They
analyzed a database of 730 compounds (including the 709
set by Cheeseman et al. [22]), focused on identifying the
structural alerts that would give the highest calculated risks
if present at very low concentrations in the diet. In this
study, five structural groups were identified to be of such
high potency that if a TTC were to be established it would
need to be set at a much lower dietary concentration than a
TTC for other structural groups. These are three high
potency genotoxic carcinogens (aflatoxin-like compounds,
N-nitroso-compounds, azoxy-compounds), and two non-
genotoxic carcinogens (steroids, and polyhalogenated
dibenzo-p-dioxins and-dibenzofurans). In conclusion, it is
suggested that a TTC would not be appropriate for chemicals
with the structural alerts for high potency carcinogenicity.

IMPLEMENTATION OF THE SAS INTO
SOFTWARE PROGRAMS

The need to speed up, and make as automatic as
possible, the use of the knowledge on SAs in the assessment
of the risk posed by the chemicals has stimulated the
implementation of SAs into software programs. Several of
these programs are expert system approaches that attempt to
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codify existing knowledge, derived from human expert
judgement, bioassay data, or any other modeling approach,
into generalized rules for use in prediction. Notable
examples include the DEREK system, applicable to the
prediction of multiple toxicity endpoints, and the
OncoLogic system, restricted to chemical carcinogenicity.
Each of these expert systems serves as a repository for
existing knowledge, and each rule conveys an explicit SAR
hypothesis that can be refined and modified as further
information becomes available. Hence, these expert systems
do not discover new associations, but rather can be
considered the end-stage of the model development process.

OncoLogic [24;25] was developed for the express
purpose of capturing, and making available for outside use,
expertise in the field of structure-based mechanisms of
chemical carcinogenesis routinely being applied in regulatory
setting by the US Environmental Protection Agency (EPA).
Mechanism-based SAR analysis has been effectively used by
EPA for many years to assess the potential carcinogenic
hazard of new chemicals, for which there are no or scanty
data, under the Premarketing / Premanufacturing Notification
program of the Toxic Substance Control Act. Essentially,
mechanism-based SAR analysis involves comparison of an
untested chemical with structurally related compounds for
which carcinogenic activity is known [16]. OncoLogic is a
computer program consisting of four independent
subsystems for estimating the carcinogenicity of fibers,
metals or metal-containing compounds, polymers, and
organics. Each subsystem has a hierarchical, decision-tree
construction, consisting of "IF-THEN-ELSE" rules that
attempt to mimic the reasoning of the human experts. This
reasoning goes beyond the recognition of specific structure
alerts, to consider general reactivity properties of the
chemical class, structural modulators to activity, metabolic
activation, and mechanisms of chemical carcinogenesis. An
enhancement allows for consideration of functional, non-
cancer toxicity data (e.g. genotoxicity, oncogene activation,
P450 induction, etc.) in the overall decision tree to improve
the chemical carcinogenicity evaluation capabilities. The
organics subsystem in OncoLogic is by far the largest and
most well developed of the four subsystems, with separate
and distinct modules for nearly 50 chemical classes
(examples include acrylates, aldehydes, and aromatic
amines), although these modules vary considerably in
coverage and information content. OncoLogic differs from
other prediction systems in that a query molecule is not
entered at the start of the analysis. Rather, a carcinogenicity
evaluation of an organic chemical begins with user
assignment of the chemical to one of the predefined chemical
classes, and proceeds through selection of structural
templates, or user-drawn entry of structures within the
constraints of the chosen class. Finally, the program
produces, as its primary output, a detailed justification
report in which the discreet program rules are converted into
a dialogue that intelligibly conveys the mechanism-based
expert reasoning underlying the semi-quantitative evaluation.
OncoLogic rules are all based on qualitative associations
with chemical structure, i.e. the program has no capabilities
for computing physical chemical properties.

Another rule-based expert system exploiting the
knowledge on SAs is DEREK (“Deductive Estimation of
Risk from Existing Knowledge”) [26, 27], which is the

result of a non-profit collaboration among the University of
Leeds, and various other educational and commercial
institutions, who contribute to the review and evolution of
the toxicity rule bases. Also confidential in-house
information from industries is used. In DEREK, rules (of
the type "IF-THEN-ELSE") associate particular chemical
functional groups, or SAs, with various forms of toxicity.
The rules are not chemical-specific; rather they are
generalizations with respect to chemical structure (e.g.
halogen-containing, acid, or alkylating agent). The resulting
generalized structural features used in prediction are termed
toxophores. The toxicological end points currently covered
by the DEREK system include carcinogenicity,
mutagenicity, skin sensitization, irritancy, teratogenicity,
and neurotoxicity. Each toxicity endpoint consults a
different rule base, and a set of toxophores. To interrogate
the system, the query structure is entered, and the rulebase is
searched by comparing structural features in the target
compound with the toxophores described in its knowledge
base. Any Structural Alert located within the query structure
is highlighted, and a message indicating the nature of the
toxicological hazard is provided. In the most recent versions,
the use of physical chemical properties (loP and logKp) to
support the predictions about likely harmful and harmless
effects of the chemicals has been also included, and the
extent and quality of the supporting information has been
improved. This includes declaring the mechanistic rules used
by DEREK to generate its assessments, and the matches
with structurally similar chemicals from a large database of
chemicals with known toxicological data [28].

DEVELOPMENTS OF SAS KNOWLEDGE
THROUGH ARTIFICIAL INTELLIGENCE AND
DATA MINING APPROACHES

In the case studies shown above, the mechanistic
knowledge on the SAs developed by human experts was
implemented into computer programs e.g., OncoLogic,
DEREK, in order to make it available to a wider circle of
experts and practitioners of chemical risk assessment. This
section of the paper regards a number of attempts aimed at
expanding the knowledge on SAs through the use of a range
of Artificial Intelligence / Data Mining methods applied to
large databases of chemicals tested for toxicity.

A first example is provided by CASE / MULTICASE.
At odds with DEREK and OncoLogic, this approach does
not use a priori knowledge on the mechanisms of action or
on SAs, but re-analyzes the database of chemicals in order to
develop its own rules (i.e., SAs) liking the toxicity of
chemicals to their structures. This approach has been
implemented into a commercial computer program [29-37].

CASE and MULTICASE are a very characterized SAR
approach, which is distinguished from other approaches by
its central reliance on computer-generated substructural
fragments, which are its major type of molecular descriptors,
and the completely automated and unbiased manner in which
these descriptors are generated and chosen for inclusion in
SAR model. In this the CASE technology relies on previous
research, whose first examples can be find in [38, 39]. In
CASE (Computer Automated Structure Evaluation), each of
the molecular structures belonging to the training database is
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decomposed by the program into all possible constituent
fragments of length 2-10 contiguous heavy atoms, with
attached hydrogens and one possible side chain. The
statistical analysis of the set of fragments generated by the
decomposition of all molecules in the training set involves
examination of the distribution of each unique fragment
among active and inactive molecules, and identification of
fragments whose distribution deviates from an ideal
symmetrical binomial distribution: each of the fragments
significantly deviating from the reference distribution is
labeled either a biophore (activating fragment) or a biophobe
(inactivating fragment). Biophores and biophobes are the
primary molecular descriptors of the CASE (Q)SAR model:
this may be expressed either as a (Bayesian) activity /
inactivity probability, or as a linear regression relating a
potency to the substructural descriptors. MULTICASE
(MULTIple Computer Automated Structure Evaluation) is a
development of the CASE program, which evolved from the
recognition of problems found in the course of CASE
analyses. In particular, MULTICASE responds to the
problem of distinguishing between SAs that provoke the
activity, and other fragments or molecular determinants that
modulate the activity. In more general terms, it attempts to
face the presence of hierarchy and nonlinearity within SAR
models as applied to noncongeneric sets of chemicals. As
CASE, MULTICASE starts by creating its own dictionary
of descriptors directly from the database. At this point, and
in contrast to CASE, MULTICASE selects the statistically
most important of these fragments as a biophore, believed to
be responsible for the observed activity of those molecules
that contain it, and separates out all the molecules
containing this biophore from the remaining database. This
process is repeated on the remaining database with the next
most significant biophore, and so on, until the database is
segmented into major biophore-containing chemical classes.
CASE analysis is then applied to each biophore class
separately to determine substructural modifiers to the
biophore activity. As final result of the analysis, a model
based on SAs identified in an unbiased way by CASE /
MULTICASE is provided. It should be remarked that the
final set of SAs used for the model are context-dependent,
and for each set of chemicals analyzed a different set of SAs
is generated. In addition, if a data set with multiple recorded
biological activities is studied, a specific set of SAs is
obtained for each biological activity considered.

The next case study regards an approach to expand and
refine the Ashby’s SAs through the application of modern
data mining techniques to the historical database of
chemicals tested for their mutagenicity in Salmonella [40].
The procedure adopted was a combination of mechanistic
knowledge, statistical tests and data mining. A dataset of
compounds with available Ames data was assembled from
the Carcinogenic Potency Database (http://potency.berkeley.
edu/) and from other public toxicity databases (i.e.,
EPA/IARC Genetic Activity Profile database at
http://www.epa.gov; and Developmental Therapeutics
Program at dtp.nci.nih.gov/webdata.html). The data were
filtered applying a series of quality criteria. A dataset of
4337 compounds with corresponding molecular structures
and toxicity categorizations (2401 mutagens and 1936
nonmutagens) was extracted. In a first analysis eight
historical SAs from the Ashby’s compilation, able to

identify correctly 75% of all mutagens in the dataset, were
selected. Each of these substructures, called “general
toxicophores”, detects 70 or more mutagens with at least
70% of accuracy. These general toxicophores are listed in
Table III. Among them, the aromatic nitro and amine, the
azo-type groups and the three-member heterocycles are
moieties well recognized toxicophores for mutagenicity.
Two other simple substructure representations that perform a
satisfactory detection of mutagens are the aliphatic halide
group (excluding the fluorine atom) and the unsubstituted
heteroatom-bonded heteroatom group (a substructure that
contains an unsubstituted heteroatom that is attached with a
single bond to another heteroatom). Finally, another general
toxicophore was represented by large polycyclic aromatic
systems, i.e., systems of three or more fused aromatic rings,
whose corresponding substructure representation consists of
one aromatic atom that is connected to at least two atoms
belonging to multiple aromatic rings.

Table III. Basic Structural Alerts According to Kazius et al.
[40]

1. aromatic nitro

2. aromatic amine

3. three-membered heterocycle

4. nitroso

5. unsubstituted heteroatom bonded heteroatom

6. azo-type

7. aliphatic halide

8. polycyclic aromatic system

The second step of the study consisted of improving the
specificity of these simple, general toxicophores by
increasing their structural complexity. General toxicophores
were used to organize the data set into different subsets.
Each of these subsets was then separately analyzed to derive
more specific toxicophores. A final set of 29 toxicophores
(Table IV) containing new substructures was assembled that
classified the mutagenicity of the investigated dataset with
18% classification error. In this set of toxicophores, the
accuracy of the “general” toxicophore (i.e. aromatic nitro,
aromatic amine) was increased by the identification and the
incorporation of detoxifying substructures (such as the
trifluoromethyl, the sulfonamide, the sulfonic acid, and the
arylsulfonyl derivatives) that were present in ortho, meta,
and/or para position(s) with respect to the toxicophore. In
addition, some general toxicophores were split into different
specific toxicophores: for example the nitroso group was
replaced by an aromatic nitroso, an alkyl nitrite, and a
nitrosamine substructure; the azo-type group, by an azide, a
diazo, a triazene, and an aromatic azo (with the incorporation
of sulfonic acid group as detoxifying substructure)
toxicophores. In some cases, general toxicophores were
flanked by specific ones: aliphatic halides by carboxylic acid
halide group and nitrogen and sulfur mustard groups, and
polycyclic aromatic system by polycyclic aromatic
hydrocarbons with and without bay- or K-regions. Finally,
some additional toxicophores were finally identified for
those mutagenic compounds (~600 compounds) that did not
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contain any general toxicophore. These new groups were
inserted as specific toxicophores even though the shortage of
available data prohibited the p-value criterion.

Table IV. Extended Structural Alerts list according to Kazius
et al. [40]

1. specific aromatic nitro

2. specific aromatic amine

3. aromatic nitroso

4. alkyl nitrite

5. nitrosamine

6. epoxide

7. aziridine

8. azide

9. diazo

10. triazene

11. aromatic azo

12. unsubstituted heteroatom-bonded heteroatom

13. aromatic hydroxylamine

14. aliphatic halide

15. carboxylic acid halide

16. nitrogen or sulfur mustard

17. bay-region in polycyclic aromatic hydrocarbons

18. K-region in polycyclic aromatic hydrocarbons

19. polycyclic aromatic system

20. sulfonate-bonded carbon (alkyl alkane sulfonate or dialkyl
sulfate)

21. aliphatic N-nitro

22. α,β-unsaturated aldehyde (including R-carbonyl aldehyde)

23. diazonium

24. β-propiolactone

25. α,β-unsaturated alkoxy group

26. 1-aryl-2-monoalkyl hydrazine

27. aromatic methylamine

28. ester derivative of aromatic hydroxylamine

29. polycyclic planar system

To test the relevance of the derived list of toxicophores,
the authors performed an external validation exercise by
collecting a second, independent dataset of Ames test data
generated with standardized protocols by either the National
Toxicology Program (NTP) or the Environmental Protection
Agency (EPA). On this validation set of 535 compounds
(including 342 mutagens (64%) and 193 nonmutagens
(36%)), the set of 29 specific toxicophores was able to
identify correctly the mutagens / nonmutagens with 15%
error percentage.

Finally, we will present a work (including one of the
authors of the above work, J. Kazius) that tests the ability of

a new approach –based on recent developments of Chemical
Data Mining and Chemical Representation- to automatically
identify SAs from the same database of Salmonella
mutagens previously used. To exploit the chemical
information that exists in a set of molecule, additional
features were considered, with respect to substructure shape
and atom type, to represent compounds. A graph based
chemical representation was developed that allows better
detection of any shape substructure, and increase the level of
chemical detail considered. In addition, the authors exploited
recent developments in graph mining algorithms in order to
efficiently detect substructures in a database of thousands of
compounds [41].

The method proposed, uses an elaborated graph-based
representation of compounds. Commonly, atoms are labelled
with atom type, or with a wildcard label used to indicate the
presence of any atom, irrespective of its atom type. In this
study, atoms were also represented with atomic hierarchies,
consisting in small tree-shaped structures with one central
atom label, the root, to which further atom labels are
attached. The root of an atomic hierarchy is labelled with a
general label, that describes a property shared by multiple
atom types (such as aromatic atoms, halogen, acidic groups,
or hydrogen donors or acceptors). Additional labels, called
specifiers, describe more atom-specific chemical information
(i.e. atom type, its formal charge and number of connected
hydrogens). The advantage of using atomic hierarchies
instead of standard atom types is that the resulting
substructures are able to describe different degrees of
chemical detail including both general and specific features
in the substructure mining process. To efficiently search for
two dimensional fragments (substructures of any size, shape,
and level of chemical detail) among the chemicals of the data
set, a novel graph-based substructure mining algorithm,
named Gaston (http://www.liacs.nl/~snijssen/gaston/), was
used. This algorithm iteratively performs a step that consists
of both substructure generation and the corresponding
substructure search, thus determining which molecules this
substructure detects. The substructures of potential interest
may be filtered by applying some constraints: a minimum
number of chemicals that have to be detected; a size
constraint on atoms and bonds; a limit on the maximum
structural complexity level.

After using different scenarios of different complexity, a
final list of six substructures able to satisfactorily
discriminate between mutagens and nonmutagens was
identified. The first substructure extracted, that is the is
most discriminative for mutagenicity, is a highly branched
substructure that contains 11 planar atoms connected with
planar bonds. In practice, it describes a polycyclic planar
system consisting of at least three rings. The second
substructure contains a nitrogen atom that is connected
through a double bond to a nitrogen or oxygen atom. It
comprises three previously described structural alerts (the
aromatic nitro, the nitroso, and the azo-type group), but also
detects different chemical compounds previously not
classified or predicted as mutagens.

The subsequent three substructures, select aliphatic
epoxides and aziridines, aliphatic halogens (Cl, Br, I) and
aromatic primary amine respectively, already known as
toxicophores. The last substructure describes an heteroatom-
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bonded heteroatom that detects heteroatom bound secondary
amines, hydroxylamines, primary peroxides and primary
amines that are connected to secondary amines. The authors
emphasize that this final decision list of only six
substructures -generated in a completely automatic way with
no a priori knowledge about mechanisms of action- had an
error of 20% in classifying the mutagenicity of the data set,
which is comparable to that obtained in the previous work
[40] based on the use of a priori knowledge on the SAs.

CONCLUSIONS

The main lesson of this mini-review is that the research
in the field of modeling the structural properties of mutagens
and carcinogens is a highly interdisciplinary work. In
particular, mechanistic research based on experimental
systems together with human ingenuity in the interpretation
of the results has provided the essential basis for the
identification of the Structural Alerts that characterize the
mutagens and carcinogens. More recently, in silico methods
have provided the means to verify, refine and implement
into computer programs the knowledge on the Structural
Alerts. At the same time, in silico methods permit the
dissemination of this knowledge to a wider circle of experts
and practitioners of the risk assessment procedures.
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