Survey of Scientific Literature
Trace Elements in Food: Fish

This list has been drafted for the EURL-CEFAO own scopes and it is not to be considered exhaustive. The listing does not imply any endorsement by the EURL or in any way mean a negative judgment, in case some articles are missing.

1. Intake of arsenic and mercury from fish and seafood in a Northern Italy community
 T. Filippini, M. Malavolti, S. Cillonia, L. A. Wiseb, F. Violia, C.A Malagolia, L. Vescovic, M. Vinceti
 Food and Chemical Toxicology 2018, 116: 20-26

2. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf
 B. Keshavarzi, M. Hassanaghaei, F. Moore, M. Rastegari Mehrb, S. Soltanianc, A. R. Lahijanzadeh, A. Sorooshian

3. Arsenic, cadmium and lead in fresh and processed tuna marketed in Galicia (NW Spain): Risk assessment of dietary exposure
 R. Núñez, M. Á. García, J. Alonso, M. J. Melgar
 Science of the Total Environment 2018, 627: 322–331

4. Trace elements in seafood from the Mediterranean sea: An exposure risk assessment
 C. Copat, A. Grasso, M. Fiore, A. Cristaldi, P. Zuccarello, S. S. Signorelli, G. Oliveri Conti, M. Ferrante
 Food and Chemical Toxicology 2018, 115: 13–19

5. Impacts of farmed fish consumption and food trade on methylmercury exposure in China
 Environment International 2018 120: 333–344

6. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health
 J. Łuczyńska, B. Paszczyk, M. J. Łuczyński
 Ecotoxicology and Environmental Safety 2018, 153: 60-67
7. Optimization of an acid digestion procedure for the determination of Hg, As, Sb, Pb and Cd in fish muscle tissue.
 E. Mohammed, T. Mohammed, A. Mohammed

8. Mussels and clams from the Italian fish market. Is there a human exposition risk to metals and arsenic?
 L. M. Chiesa, F. Ceriani, M. Caligara, D. Di Candia, R. Malandra, S. Panseri, F. Arioli

9. Human exposure to organic arsenic species from seafood

10. Evaluation of mercury, cadmium and lead levels in fish and fishery products imported by air in North Italy from extra-European Union Countries
 Food Control **2016**, 60: 329-337

11. Assessment of trace element contamination and bioaccumulation in algae (Ulva lactuca), mussels (Perna perna), shrimp (Penaeus kerathurus), and fish (Mugil cephalus, Sarotherodon melanotheron) along the Senegalese coast
 M. Diop, M. Howsam, C. Diop, J. F. Goossens, A. Diouf, R. Amara

12. Measurement of haem and total iron in fish, shrimp and prawn using ICP-MS: Implications for dietary iron intake calculations
 M. S. Wheal, E. DeCourcy-Ireland, J. R. Bogard, S. H. Thilsted, J. C.R. Stangoulis
13. Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa
 A.C. Bosch, B. O'Neill, G. O. Sigge, S. E. Kerwath, L. C. Hoffman

14. Heavy metals in marine fish meat and consumer health: a review
 A. C. Bosch, B. O'Neill, G. O. Sigge, S. E. Kerwath, L. C. Hoffman

16. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh

17. Assessment of lead, cadmium and mercury in seafood marketed in Puglia and Basilicata (Italy) by inductively coupled plasma mass spectrometry
 O. Miedico, M. Iammarino, C. Pompa, M. Tarallo & A. E. Chiaravalle

18. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers
 M. Hosseini, S. M. Nabavi, S. N. Nabavi, N. A. Pour
19. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine
H. Okyere, R. B. Voegborlo, S. E. Agorku
Food Chemistry 2015, 179: 331-335.

20. Heavy metal levels in mud crabs (Scylla spp.) from East Bataan Coast.
C. C. Cruz, G. Ramos, M. C. Ablan-Lagman
Environmental Science and Pollution Research International 2015, 22: 6359-6363

21. Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area
S. Zaza, K. de Balogh, M. Palmery, A. A. Pastorelli, P. Stacchini
Journal of Food Composition and Analysis 2015, 40: 148-153

22. Metal concentrations in selected brands of canned fish in Nigeria: estimation of dietary intakes and target hazard quotients
C. M. Iwegbue
Environmental Monitoring and Assessment 2015, 187: 85

H. R. Yang, N. Y. Kim, L. H. Hwang, J. S. Park, J. H. Kim
Food Additives & Contaminants Part B Surveillance 2015; 8: 44-49

24. Seasonal survey of contaminants (Cd and Hg) and micronutrients (Cu and Zn) in edible tissues of cephalopods from Tunisia: assessment of risk and nutritional benefits
M. Rjeibi, M. Metian, T. Hajji, T. Guyot, R. Ben Chaouacha-Chekir, P. Bustamante
Journal of Food Science 2015, 80: 199-206
25. Distribution of heavy metals in internal organs and tissues of Korean molluscan shellfish and potential risk to human health.
 J. S. Mok, J. Y. Kwon, K. T. Son, W. S. Choi, P. H. Kim, T. S. Lee, J. H. Kim

26. Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry
 N. A. Panichev, S. E. Panicheva

27. Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in Catalonia (Spain) and health risks for the consumers
 Food and Chemical Toxicology **2015**, 86: 34-40

28. Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood
 A. A. V. Zmozinski, S. Carneado, C. Ibanez-Palomino, A. Sahuquillo, J. Fermin Lopez-Sanchez, M. M. da Silva
 Food Control **2014**, 46: 351-359

29. Development, validation and accreditation of a method for the determination of Pb, Cd, Cu and As in seafood and fish feed samples
 A. K. Psoma, I. N. Pasias, N. I. Rousis, K. A. Barkonikos, N. S. Thomaidis

30. Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas
 L. Noël, R. Chekri, S. Millour, M. Merlo, J. C. Leblane, T. Guérin
 Chemosphere **2013**, 90: 1900–1910
31. Validation of an analytical method for the determination of cadmium (Cd) in fish by atomic absorption spectrometry with electrothermal atomisation

32. Method validation for the determination of total mercury in fish muscle by cold vapour atomic absorption spectrometry
Food Additives and Contaminants 2012, 29: 617–624

33. Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS)
J. Djedjibegovic, T. Larssen, A. Skrbo, A. Marjanović, M. Sober
Food Chemistry 2012, 131: 469–476

34. Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption
C. Vieira, S. Morais, S. Ramos, C. Delerue-Matos, M. B. P. P. Oliveira
Food and Chemical Toxicology 2011, 49: 923–932

35. Determination of copper, lead, cadmium and zinc content in commercially valuable fish species from the Persian Gulf using derivative potentiometric stripping analysis
S. S. Saei-Dehkordi, A. A. Fallah

36. Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique
A. Fallah, S. S. Saei-Dehkordi, A. Nematollahi, T. Jafari
37. Heavy metals: Implications associated to fish consumption

M. I. Castro-González, M. Méndez-Armenta

Environmental Toxicology and Pharmacology **2008**, 26: 263–271